Calculemus 2005 Preliminary Version

Quantifier Elimination over Algebraically
Closed Fields in a Proof Assistant using a
Computer Algebra System

David Delahaye !

CPR (CEDRIC)
CNAM
Paris, France

Micaela Mayero 2
LCR (LIPN)

Université Paris Nord (Paris 13)
Villetaneuse, France

Abstract

We propose a decision procedure for algebraically closed fields based on a quanti-
fier elimination method. The procedure is intended to build proofs for systems of
polynomial equations and inequations. We describe how this procedure can be car-
ried out in a proof assistant using a Computer Algebra system in a purely skeptical
way. We present an implementation in the particular framework of Coq and Maple
giving some details regarding the interface between the two tools. This allows us
to show that a Computer Algebra system can be used not only to bring additional
computational power to a proof assistant but also to enhance the automation of such
tools.

Key words: Theorem Proving, Computer Algebra,
Algebraically Closed Fields, Coq, Maple

1 Introduction

An Algebraically Closed Field (ACF) K is a field which has no proper algebraic
extension, i.e. every algebraic extension is K itself. This means that every

! David.Delahaye@cnam.fr, http://cedric.cnam.fr/~delahaye/.

2 mayero@lipn.univ-parisi3.fr, http://www-lipn.univ-paris13.fr/ mayero/.

This is a preliminary version. The final version will be published in
FElectronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

DELAHAYE & MAYERO

non-constant polynomial of K[X| has a root in K. With respect to the usual
properties of a field, this adds the following condition:

(1) VP € K[X].deg(P) > 0= dz € K.P(z) =0

where deg(P) denotes the degree of P.

As examples of ACFs, we can take the field of complex numbers, which is
the algebraic closure (i.e. the algebraic extension which is algebraically closed)
of the field of real numbers, or the field of algebraic numbers, which is the al-
gebraic closure of the field of rationals. It can be shown that equation (1) is
equivalent to what is known as the Fundamental Theorem of Algebra (FTA),
also called D’Alembert’s theorem?® when proved over the field of complex
numbers, which states that, given an ACF K, every polynomial of K[X] of
degree n > 0 has exactly n roots (which may not be distinct). From a mathe-
matical point of view, this theorem has the nice and direct consequence that
polynomials over K[X] can be factorized and it is possible to solve polynomial
equation and inequation systems of the following form:

P (X)=0,...,P(X)=0
QX)) #0,...,Qun(X)#0

To solve this kind of system, we only have to factorize all the polynomials
and to choose a common root of all P; which is not a root of any);. However,
from a computational point of view, this process of factorization is not fully
automatic in general. It can only be done in some particular cases such as
over finite fields or in the field of complex numbers using, for instance, the
Kneser constructive proof of equation (1) (see the FTA project [9]). Moreover,
in practice, these methods turn out to be unsatisfactory: the former raises a
problem of complexity (in general, the size of the splitting field of a polyno-
mial is exponential in the degree), whereas the latter can produce arbitrary
algebraic numbers as roots (typically, in [9], roots are pairs of limits of Cauchy
sequences) and these are generally difficult to deal with.

(2)

In this paper, in order to solve systems such as (2), we consider an al-
ternative method, called quantifier elimination due to the implicit existential
quantifier (over the main variable X of the polynomials) we are trying to elim-
inate, which is mainly based on the idea of getting rid of the polynomial parts
which do not contain the solution. This can be carried out by means of the
notion of polynomial ged, which is the main concept underlying this method
and which makes it possible to simplify the system to be solved. Moreover,
this method is a little stronger in the sense that it can deal with ACFs of any
characteristic (not only 0), even if the latter must be known.

To integrate this method into a Deduction System (DS), several options
can be considered (as described in [1]; some of these ideas are also discussed
in [17] in a more general way to develop reliable algorithmic software). The

3 Due to his first serious attempt at a proof of the FTA in 1746, even if the first proof is
usually credited to Gauss in his doctoral thesis of 1799.

2

DELAHAYE & MAYERO

first could be to carry it out in a purely autarkic* way, i.e. the method is
entirely coded in the DS and, in particular here, we have to define the notion
of ged (with possibly its proof of correctness). This choice may appear quite
natural but it may also seem a little redundant with respect to the existence of
Computer Algebra Systems (CAS) which are dedicated to this kind of compu-
tation and are probably more efficient. Another option is to benefit from the
help provided by Computer Algebra (CA) using a CAS each time a symbolic
computation is needed and verifying its correctness in a so-called skeptical
style. Actually, we could also consider a believing approach which consists in
trusting the CAS and assuming that the returned computations are correct,
but such assumptions are a little too strong (CAS may have some bugs but
more frequently, some side conditions may be omitted during computations)
and we may find this option unsuitable.

In this paper, we focus on a skeptical approach to carry out the quantifier
elimination method over ACFs (considering univariate polynomials) and, in
particular, we describe how much easier it is to verify that a polynomial is a
ged (thanks to the cofactors and Bézout’s theorem) than to compute it directly
(with a certified function). To implement the method, we chose Coq [22] as
a DS and Maple [4] as a CAS since an existing interface between these two
tools [8] (designed by the authors) was an appropriate basis for an extension
for the polynomial gecd. The method we consider is commonly accepted (it
combines some well-known properties) and this paper provides two main nov-
elties: the first consists in presenting the proof of the quantifier elimination
problem in a purely constructive way so that an algorithm can be extracted;
the second is to show that CASs can be used not only to bring computation
to DSs (as in [12] or in [8]) but also to enhance the automation of such tools.

2 Quantifier elimination over ACFs

Before explaining the method we used, we need some preliminary lemmas
mainly related to the polynomial ged (for information, the corresponding
proofs, which are rather well known, can be found in appendix A). In the
following, the functions deg and gcd will denote respectively the degree of a
polynomial and the monic ged of two polynomials. Considering a polynomial
P(X), the notation P will denote, by default, the polynomial P(X), except
under a quantifier binding the variable say x, where it will denote the value
of the corresponding function of P(X) at x. We consider that we are im-
plicitly in an ACF K and every polynomial will be in K'[X], where K’ C K
s.t. the equality to zero is decidable and, given two polynomials P; and P,
ng(Pl,PQ) e K'.

4 The words "autarkic", "skeptical" and "believing" were coined by Henk Barendregt and

Arjeh M. Cohen in [1].

DELAHAYE & MAYERO

2.1 Preliminary lemmas

Proposition 2.1 (Common roots) Let P, and P, be two non-zero polyno-
mials. Let G = gcd(Py, Py). We have: 32.Py = 0A P, =0 iff 32.G = 0.

Proposition 2.2 (Existence of a non-root value) Let () be a non-zero
polynomial. We have: dz.Q) # 0.

Proposition 2.3 (Roots of relatively prime polynomials) Let P and Q
be two relatively prime non-zero polynomials (i.e. gcd(P,Q) = 1). We have:
. P=0AQ %0 iff 3.P = 0.

Proposition 2.4 (Roots of quotient and gcd) Let P and Q be two non-
zero polynomials. Let G = gcd(P, Q) and Py be a polynomial s.t. P = GP;.
We have: 3z.P =0ANQ # 0 iff 3x.PL =0AG # 0.

The following proposition states that iterating the application of proposi-
tion 2.4 defines a well-founded induction scheme (the induction is made over
the degree) and this will allow us to ensure the termination of our algorithm:

Proposition 2.5 (Degree decrease) Let P and @) be two non-zero polyno-
mials. Let G = ged(P, Q) and P; be a polynomial s.t. P =GP,. If P and Q
are not relatively prime then deg(P;) < deg(P).

2.2 Method

In the problem consisting in solving system (2), we will not consider constant
polynomials, which can be easily dealt with before applying the method de-
scribed below. Indeed, given P; = ¢, where ¢ € K', if ¢ = 0 then this equality
can be removed from the system, or else the system has no solution. Similarly,
considering @; = ¢, with ¢ € K', if ¢ = 0 then the system has no solution,
otherwise the equality can be removed.

The main theorem of quantifier elimination over ACFs is the following:

Theorem 2.6 (Quantifier elimination) Let P, ,—1., and Qj j=1.m be
non-constant polynomials. The problem to know if there exists x s.t.:

PL=0A..AP,=0AQi £0A ... AQn #0

18 decidable.

Proof. If ® denotes the proposition 3z. A” P, = 0A A™,Q; # 0, the idea
is to prove ® V =® constructively (i.e. without using the excluded middle
trivially) and using only well-founded induction schemes. In particular, this
means that the previous proposition must be proved either by giving a proof
of ® or by giving a proof of =®. Moreover, if some properties are used itera-
tively (providing equivalent propositions to be proved), we must ensure that
the process terminates (looking for some decreasing measures). Thus, this will
prove the theorem but it will also allow us to extract a correct, complete and

4

DELAHAYE & MAYERO

terminating procedure for our problem®. In the following, the left and the
right cases denote that we prove ® V —® giving respectively a proof of ® and
a proof —®.

Let P = gcd(Pi-1.,) and Q = []~, Q; when respectively n > 0 and m > 0.

(i) n =0, m > 0: we are in the left case (proposition 2.2).

(ii)) n > 0, m = 0: the root is common to P; i.e. it is equivalent (proposi-
tion 2.1) to showing if 3x.P = 0 or not. If P # 1 then we are in the left
case (definition of ACF); if not we are in the right case.

(iii) » > 0, m > 0:

e if P =1 then we are in the right case.
e else let G = gcd(P, Q):
- if G = 1 then it is equivalent to showing if 3z.P = 0 or not (proposi-
tion 2.3).
- else let P’ be a polynomial s.t. P = GP'. It is equivalent to showing
if 3z.P' = 0 A G # 0 or not (proposition 2.4; well-founded induction

scheme due to proposition 2.5).
O

As said previously, we can extract, from the constructive proof of theo-
rem 2.6, an algorithm which builds (if possible) a proof of:

P, =0A . AP, =0AQ1 Z0A ... AQy #0

The algorithm is the following:

L. if n = 0 then go to III else compute P = gcd(P; ;=1.n)-

IT. if m = 0: apply proposition 2.1. It is equivalent to proving Jz.P = 0:
1. if P # 1 then terminate applying the definition of ACF
2. else fail

II1. if m # 0:
1. compute @ = [[*, Qi
2. if n = 0 then apply proposition 2.2
3. else it is equivalent to proving 3x.P = 0 A Q # O:
a. if P =1 then fail
b. else compute G = ged(P, Q):
i. if G =1 then apply proposition 2.3
ii. else apply proposition 2.4 and re-apply the algorithm.

Actually, in practice, it is more efficient to apply step III to each @; indi-
vidually rather than to the product of all ();, but the latter is only used to
simplify the presentation of the algorithm.

> We do not recall here the ideas of Brouwer-Heyting-Kolmogorov’s semantics which make
this possible (giving a functional behavior to proofs) and the reader who may not be familiar
with these notions is invited to refer to the abundant literature in this domain.

5

DELAHAYE & MAYERO

Remark 2.7 The method that has been described is fully constructive in the
general theory of ACFs even if the method stops at the definition of ACF,
which saves us from giving an explicit solution. Indeed, this definition is an
axiom and cannot be realized (i.e. proved constructively) in the theory of
ACFs in general. However, if the method remains constructive in general, it
can be more informative in some particular cases, as for C for example, where
the constructive proof of FTA can be used to build effective roots (even if
these roots may be arbitrary algebraic numbers, which are often difficult to
handle).

3 Integration in a DS using a CAS

Let us see how the procedure described in the previous section can be inte-
grated into a DS and how a CAS can help for some computations (mainly for
the ged). We also present a specific implementation in the framework of Coq
where Maple is called to perform the symbolic computations.

3.1 Polynomials and characteristic

To implement the method described in subsection 2.2, we must ensure that
everything can be decided and more precisely, that a coefficient is zero or
not. For example, this is necessary to compute the degree of a polynomial
or the ged of two polynomials (indeed, the degree of a polynomial is defined
as the greatest natural number s.t. the corresponding coefficient is non-zero,
whereas gecd algorithms, e.g. Euclid’s algorithm, generally terminate with the
zero polynomial). In our method, this is ensured by means of the assumption
that we use polynomials over K'[X] where K’ C K s.t. the equality to zero
can be decided and the ged of polynomials over K'[X| remains in K'[X]. The
former condition over K’ deals with the case of the zero coefficient whereas the
latter makes the recursive call of the algorithm (described in subsection 2.2)
possible. Thus, in our implementation, we decided to use rational polynomials,
i.e. polynomials with rational coefficients. However, as the characteristic may
be non-zero, the latter must be given (it appears simply as a parameter in
our theory) and then the equality to zero can be decided (the corresponding
function is generically built w.r.t. the characteristic).

3.2 A skeptical approach

The idea of our approach is purely skeptical (see [1]| for a general study of how
to make DSs and CASs interact). This means that the quantifier elimination
procedure is handled by the DS which may call a CAS for some computations
and must verify the correctness of these computations. These verifications
are intended to ensure that the logical consistency of the DS is not endan-
gered by these external computations. Actually, this may look obvious but
in this approach, it is not always necessary to prove the correctness of an

6

DELAHAYE & MAYERO

external computation if no property is required over this computation. For
example, considering the algebraic expression z? — 1, if we want to factorize
it in (z + 1)(z — 1) using a CAS, there is no need, a priori, to verify that the
result returned by the CAS is correct. In particular, we can use it without
any verification if we do not make the assumption that this result is the fac-
torization of 22 — 1 (otherwise, we could introduce a potential inconsistency).
However, if we want to ensure that the two expressions are equivalent (to re-
place the latter by the former in a proof, for example) then this equivalence
has to be proved (typically using the appropriate ring properties).

In our procedure, the main symbolic computation we use is the polynomial
ged and this is exactly what we want to be performed by a CAS. We must
also point out that this computation must be verified as being exactly the ged
since several lemmas of section 2 used in the procedure require this result to
be a gcd and not only a divider. To do so, the idea is to use the converse
of Bézout’s theorem (which is stated in appendix A to prove some of the
preliminary lemmas of section 2), i.e.:

Theorem 3.1 (Bézout’s theorem, converse) Let P, Q and G be three

non-zero polynomials. If G divides P and QQ, and if there exist two polynomials
A and B s.t. AP+ BQ = G then G is the ged of P and Q.

With this theorem, in addition to the gcd, we need to ask to the CAS
to also return the two quotients P, and (); corresponding respectively to the
division of P and @ by G, as well as the two cofactors A and B of the Bézout
relation. Thus, in the DS, it remains to prove the following equalities:

P=PG
Q=G
G = AP+ BQ

This additional information provided by the CAS can be seen as certificates
which are intended to help the DS to prove the correctness of the computation.
However, some of them are little more than simple certificates, for example,
the quotient P; is also used in the procedure itself (see propositions 2.4 and 2.5
in section 2).

We can notice that the previous equalities are much easier to prove than to
compute the ged in an autarkic way (i.e. directly in the DS) because we have
to write the ged function in the DS, but more difficult, we also have to build
its correctness proof. In our approach, we can potentially benefit from the use
of more clever algorithms (than Euclid’s algorithm, in some particular cases
where the coefficients are integers or rationals, for example) provided by the
CAS whose correctness does not need to be proved (we verify that each call
is correct but we do not ensure the global correctness of the external function
which would be as hard to prove as the algorithm is sophisticated).

7

DELAHAYE & MAYERO

3.8 Using Coq and Maple

As a concrete application, we chose to implement our decision procedure using
Coq [22] as a DS and Maple [4] as a CAS. This choice was motivated by the
existence of an interface between the two tools [8] (designed by the authors
and available as a Coq user contribution), which was a good basis for any ex-
tension required by the realization of our method. This interface is intended
to bring, to Coq, computations from Maple on algebraic expressions over a
field in a skeptical way. The possible properties (mainly equalities required
to be verified by the skeptical mode) are automatically handled by a tactic,
called field [7] (also designed by the authors), which may generate some side
conditions (over the inverses) to be proved by the user. To carry out our
method, it has been necessary to develop an univariate polynomial theory in
Coq and the Coq/Maple interface has been extended to deal with the poly-
nomial gcd. This operation obviously returns the gcd but also the quotients
and the cofactors (required, as said previously, to prove that it is the ged).
The validation of the ged implies proving the equalities given in section 3.2,
which is automatically done using the polynomial operations and comparing
the polynomial coefficients (we use the tactic field). In this way, the call to
Maple is quite transparent for the Coq user.

Another point which motivated our choice, was that Coq owns an elab-
orated toplevel tactic language (see [6]). With this high-level language, it
is not necessary to go into the details of the implementation of Coq (which
is necessary if you intend to write your tactic with the full-programmable
meta-language®) and our method has been built very intuitively (w.r.t. the
procedure given in section 2.2). This possibility is obviously important for the
developer but also for any user who does not get lost when taking a look at
the code. The whole development (containing the updated Coq/Maple inter-
face, the quantifier elimination tactic as well as some examples) will be soon
available as a new Coq contribution. For information, this development works
with Coq 8.0 (the latest version of Coq) and Maple V (and should also work
with newer versions of Maple).

4 Some examples

To show some examples, we use the tool that has been implemented in the
framework of Coq/Maple and briefly described in subsection 3.3. As an ACF,
we consider a construction of C (where the elements are pairs of reals), which
we call C (the property of ACF has been assumed but could be proved later).
The constants CO and C1 denote respectively the neutral elements 0 and 1 of C.
Rational constants of C are built by means of the function Ccte which, given

6 The meta-language must be distinguished from the logic language (where the theorems
are expressed and proved) and aims at providing a means to write programs which can
build (automatically) proofs.

DELAHAYE & MAYERO

a natural number n, returns the expression (C1+...+C1)/C1, n times, where
+ and / are respectively the addition and the division in C. The univariate
polynomial theory (with rational coefficients), we developed and called pol,
requires a canonical representation of polynomials, which are encoded as lists
of coefficient /power sorted decreasingly w.r.t. the power. Thus, a polynomial
is formed using the constructor PList which takes, as arguments, the coeffi-
cient /power list and a proof that the list is correctly sorted. Given a value,
the function UPeval allows us to evaluate a polynomial.

In our examples, we consider the following polynomials (to simplify, we
have chosen to give only integer coefficients, rather than rational coefficients;
however, in these examples, we often deal with rational polynomials since the
quotients of the division by the gcd as well as the cofactors of the Bézout
relation, necessary to ensure the correctness of the computation as described
in subsection 3.2, are often rational polynomials):

P =3X?24+X+2
P,=3X?+10X?+5X +6
Q=2X -1

Qs =2X%24+5X -3

which are supposed to be defined as the Coq constants P1, P2, Q1 and Q2.
More precisely and for information, P1 is, for example, defined as follows:

Definition P1 : pol C := PList C ((Ccte 3, 2) :: (Ccte 1, 1) ::
(Ccte 2, 0) :: nil) sorted_pl.

where : : /nil are the list constructors and sorted_p1 is a proof (previously
built) that the list of powers (i.e. 2, 1 and 0) is decreasingly sorted.

In the following, we suppose that the ACF axiomatization, the univariate
polynomial theory, the Coq/Maple interface and the quantifier elimination
tactic, called qelim, have been loaded in the Coq toplevel. We also suppose
that the previous polynomials P1, P2, Q1 and Q2 have already been defined.

4.1 Some simple cases

Here, we give some examples illustrating some identified cases of the algorithm
described in subsection 2.2.

4.1.1 CaseIl: n#0 and m =0
We propose to prove the following proposition:
3.’L‘.P1:0/\P2:0

In this case, we have gcd(P;, P,) = 3X%+ X + 2 and by proposition 2.1, it
is equivalent to showing 3z.32> + z + 2 = 0 (which is trivially proved by the

9

DELAHAYE & MAYERO

definition of ACF).
In Coq, we have:

Coq < Goal exists x : C, UPeval x P1 = CO /\ UPeval x P2 = CO.
1 subgoal

exists x : C, UPeval x P1 = CO /\ UPeval x P2 = CO

Once the definitions of P1 and P2 unfolded, we apply the quantifier elimi-
nation tactic (qelim):

Unnamed_thm < unfold P1, P2.
1 subgoal

exists x : C,
UPeval x (PList C ((Ccte 3, 2) :: (Ccte 1, 1)
(Ccte 2, 0) :: nil) sorted_pl) = CO /\
UPeval x (PList C ((Ccte 3, 3) :: (Ccte 10, 2) :: (Ccte 5, 1)
(Ccte 6, 0) :: nil) sorted_p2) = CO

Unnamed_thm < gelim.
Proof completed.

In the same way, we could also test the dual situation where n = 0 and
m # 0 (case 2) using, for example, Q1 and Q3 to prove 3z.QQ1 # 0 A Qo # 0.

4.1.2 Case b: recursive call

In the following example, we want to get a recursive call of the algorithm (case
ii of b). This can be obtained when trying to prove:

2. P =0AQy 0

In this case, we have gcd(P,, Q2) = X + 3 = G and by proposition 2.4,
it is equivalent to proving 3z.P,; = 0 A G # 0, where Py, is s.t. P, = P,G.
We have to re-apply the algorithm: we compute gcd(P,, G) = 1 and by
proposition 2.3, it is equivalent to showing Jz.P,, = 0 (which is trivially
proved by the definition of ACF).

In Coq, as previously, after having unfolded the definitions of P2 and Q2,
we can apply the tactic qelim:

Coq < Goal exists x : C, UPeval x P2 = CO /\ UPeval x Q2 <> CO.
Unnamed_thm < unfold P2, Q2; qelim.
Proof completed.

10

DELAHAYE & MAYERO

4.1.8 Case a: failure

Finally, to illustrate the completeness of our tactic, we can give an example
which fails (in the case a). This situation can occur when trying to prove the
following proposition:

3x.P1:OAQ1:0AQ27EO

Here, P, and @), are relatively prime and it is not possible to find common
roots (actually, the condition over @y is irrelevant since we cannot solve the
constraint between P; and Q).

In Coq, we have:

Coq < Goal exists x : C, UPeval x P1 = CO /\ UPeval x Q1 = CO /\
Coq < UPeval x Q2 <> CO.

Unnamed_thm < unfold P1, Q1, Q2; qelim.

Toplevel input, characters 739-744

> unfold P1, Q1, Q2; gelim.

s amaaa

Error: Tactic failure "This system has no solution!"

where the error is raised by the tactic gelim, which fails to be applied
(since the statement to be proved is false).

4.2 Another example

A more sophisticated example could be inspired by a geometrical problem.
For instance, let us consider two curves and a line defined by the following
polynomials:

quartic= X*+ X3+ X2+ X
cubic= X3+ X2+ X +1
line=X+1

The problem is to know if there exist points which are on the two curves
but not on the the line, i.e. can we prove the following proposition:

Jrat+ P+l +r=0A2 +2°+2+1=0Az+1#0

Informally, we know that there are 3 points which are solutions of
2+ 23+ 22+ =0and 22 +22+2+1 = 0: i, —i and —1. The solu-
tion —1 does not satisfy z + 1 # 0 but the two other complex solutions do.
Thus, this problem has a solution.

In Coq, if we suppose that the corresponding polynomials quartic, cubic
and line have already been defined, we have:

Coq < Goal exists x : C, UPeval x quartic = CO /\
Coq < UPeval x cubic = CO /\ UPeval x line <> CO.

11

DELAHAYE & MAYERO

Unnamed_thm < unfold quartic, cubic, line; gelim.
Proof completed.

5 Related work

Quantifier elimination is a very prolific topic in Computer Algebra. Many
studies have been carried out, mainly over Real Closed Fields (RCF) but
also over ACFs. Regarding ACFs and w.r.t. our approach, these studies are
generally in the particular context of complex numbers (assuming the null-
characteristic) or do not aim at being implemented in a DS (and obviously
do not consider a CAS to do so). For example, we can refer to the work
of John Harrison [11] who developed a decision procedure for the first order
algebraic theory of C in the HOL proof assistant in order to prove the FTA.
Hervé Perdry, in his PhD thesis [18], gives a simple algorithm inspired from
a kind of cylindric algebraic decomposition. Finally, Doug lerardi [14] gives a
fast and parallel decision procedure for ACFs.

Regarding RCFs, historically, the first quantifier elimination algorithm was
given by Alfred Tarki [21] (see also the work of Abraham Seidenberg [20]). The
major problem when dealing with RCFs is the complexity of the algorithm.
Thus, we can find abundant literature aiming at improving the efficiency of
the quantifier elimination in these fields. Chronologically, we have the work
of Kreisel-Krivine [15], Collins [5], Heintz-Roy-Solerno [13], Renegar [19], who
gave a double exponential algorithm, and more recently, the best algorithm
(w.r.t. worst-case complexity) for this problem appeared in [2]. Some of these
algorithms have been implemented in some theorem provers. For example,
John Harrison [10] did this in HOL using a variant of the Kreisel-Krivine
algorithm. In Coq also, Assia Mahboubi and Loic Pottier [16] deal with the
univariate polynomials having a degree at most 3 using the Tarski-Seidenberg
principle described in [3].

6 Conclusion

6.1 Summary

In this work, several goals have been achieved. First, we have proved the
decidability of the first order theory of ACFs (for the univariate case) in an
original way, i.e. using a purely constructive style (without excluded middle
and applying well-founded induction schemes). From this proof, we have been
able to extract a quantifier elimination algorithm for the first order theory
of ACFs. Next, we have described a general method to carry out this algo-
rithm in a DS using a CAS for some computations (essentially the ged) in a
purely skeptical way. Finally, we have presented an implementation that we
developed in the framework of Coq and Maple, as well as some examples that
can be dealt with. If importing computations from a CAS to enhance the

12

DELAHAYE & MAYERO

computational power of a DS can be considered as a routine these days, this
implementation shows concretely how CAS computations can be also used to
enhance the power of automation of DSs.

6.2 Future work

As future work, we would like to deal with multivariate polynomials. However,
our procedure cannot be directly extended to do so. Indeed, for example, even
if we consider multivariate polynomials of K[X,Y] as recursive univariate
polynomials of K[X][Y], our procedure cannot be recursively reused because
although K is a field, K[X] is not. Thus, to generalize our work to the
multivariate case, we have to deal with all the variables simultaneously. An
initial idea could be to transform the problem into one of solving a system of
polynomial equations (the inequations are converted into equivalent equations
using the Rabinowitsch trick, i.e. # y = Jz.(x —y)z+1 = 0). Then we could
use, for instance, Grobner bases (whose computation can be also imported
from Maple) to get equivalent triangular systems, which can be solved (by
substitution), or Hilbert’s Nullstellensatz (using, more appropriately, the weak
Nullstellensatz corollary stating that I is a proper ideal over K[X7,..., X,]
iff there exists a common zero for all polynomials in I) building the ideal
generated by the polynomials of the system and showing that it is a proper
ideal.

Another extension of this work could be to consider RCFs. Actually, a
major part of our algorithm could be reused (almost everything except when
concluding with the definition of ACF or with proposition 2.2) to fit with a
quantifier elimination for RCFs. On those fields, we could also extend the
algebra dealing with the symbol >. Such an extension would be interesting
not so much for the method itself (as said in section 5, the literature is really
prolific in this domain) but always in the way of carrying it out in a DS using
a CAS. This allows us to understand how, in the particular framework of Coq
and Maple, this work would be rather orthogonal to [16] even if this aims at
dealing with the same problem.

Acknowledgements. We would like to thank Thierry Coquand who helped
us in the integration of the procedure in a DS using a CAS (in particular,
for dealing with the ged proofs by means of Bézout’s theorem). Thanks also
to Hervé Perdry whose many discussions regarding quantifier elimination over
RCFs inspired us in the design of this method for ACFs.

References

[1] Henk Barendregt and Arjeh M. Cohen. Electronic Communication of
Mathematics and the Interaction of Computer Algebra Systems and Proof
Assistants. Journal of Symbolic Computation (JSC), 32(1/2):3-22, July/August

13

DELAHAYE & MAYERO

2001.

[2] Saugata Basu, Richard Pollack, and Marie-Frangoise Roy. On the Combinatorial
and Algebraic Complexity of Quantifier Elimination. Journal of the ACM.,
43(6):1002-1045, November 1996. Extended abstract in Proc. 35th Symposium
of foundation of Computer Science, (1994).

[3] Jacek Bochniak, Michel Coste, and Marie-Francoise Roy. Real Algebraic
Geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.

Folge / A Series of Modern Surveys in Mathematics. Springer-Verlag, 1998.
ISBN 3-540-64663-9.

[4] Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, Benton L. Leong,
Michael B. Monagan, and Stephen M. Watt. The Maple V Language Reference
Manual. Springer-Verlag, New York, 1991. ISBN 0387976221.

[5] George E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition. In Second GI Conference on Automata Theory and
Formal Languages, volume 33, pages 134-183. Springer-Verlag LNCS, 1976.

[6] David Delahaye. A Tactic Language for the System Coq. In Proceedings of Logic
for Programming and Automated Reasoning (LPAR), Reunion Island (France),
volume 1955, pages 85-95. Springer-Verlag LNCS/LNAI, November 2000.
http://cedric.cnam.fr/~delahaye/publications/LPAR2000-Itac.ps.gz.

[7] David Delahaye and Micaela Mayero. Field: une procédure de décision pour
les nombres réels en Coq. In Journées Francophones des Langages Applicatifs,
Pontarlier (France). INRIA, Janvier 2001.
http://cedric.cnam.fr/~delahaye/publications/JFLA2000-Field.ps.gz.

[8] David Delahaye and Micaela Mayero. Dealing with Algebraic Expressions over
a Field in Coq using Maple. Journal of Symbolic Computation (JSC), 2005. To
appear.

[9] Herman Geuvers, Freek Wiedijk, Jan Zwanenburg, Randy Pollack, and Henk
Barendregt. The "Fundamental Theorem of Algebra" Project, 2000.
http://www.cs.kun.nl/gi/projects/fta/.

[10] John Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.
ISBN 3-540-762566-6.

[11] John Harrison. Complex Quantifier Elimination in HOL. In Richard J. Boulton
and Paul B. Jackson, editors, TPHOLs 2001: Supplemental Proceedings, pages
159-174. Division of Informatics, University of Edinburgh, 2001. Published
as Informatics Report Series EDI-INF-RR-0046. Available on the Web at
http://www.informatics.ed.ac.uk/publications/report/0046.html.

[12] John Harrison and Laurent Théry. A Skeptic’s Approach to Combining HOL
and Maple. Journal of Automated Reasoning, 21:279-294, 1998.

[13] Joos Heintz, Marie-Frangoise Roy, and Pablo Solerno. Sur la complexité du
principe de Tarski-Seidenberg. Bull. Soc. math. France, 118:101-126, 1990.

14

DELAHAYE & MAYERO

[14] Doug Ierardi. Quantifier Elimination in the Theory of an Algebraically-closed
Field. In Proceedings of the twenty-first annual ACM symposium on Theory of
computing, pages 138-147. ACM Press, 1989.

[15] Georg Kreisel and Jean-Louis Krivine. Eléments de logique mathématique:
théorie des modéles. Dunod, 1964.

[16] Assia Mahboubi and Loic Pottier. Elimination des quantificateurs sur les réels
pour Coq. In Journées Francophones des Langages Applicatifs, (France). INRIA,
Janvier 2002.

[17] Kurt Mehlhorn. The Reliable Algorithmic Software Challenge RASC. In
Computer Science in Perspective, volume 2598 of Lecture Notes in Computer
Science, pages 255-263. Springer-Verlag, 2003.

[18] Hervé Perdry. Aspects constructifs de la théorie des corps valués. PhD thesis,
Université de Franche-Comté, Décembre 2001.

[19] James Renegar. On the Computational Complexity and Geometry of the First
Order Theory of the Reals. Journal of Symbolic Computation (JSC), 13(3):255—
352, 1992.

[20] Abraham Seidenberg. A New Decision Method for Elementary Algebra. Annals
of Mathematics, 60:365-374, 1954.

[21] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1951. Previous version published as a technical
report by the RAND Corporation, 1948; prepared for publication by J. C. C.
McKinsey.

[22] The Coq Development Team. The Coq Proof Assistant Reference Manual
Version 8.0. INRIA-Rocquencourt, January 2005.
http://coq.inria.fr/doc-eng.html.

A Proofs

In the following and according to our convention, the notation P(z;) will
denote, by default, the product of the polynomials P(X) and z;(X), whereas
under a quantifier z, it will denote the product of P(z) and z;(z), i.e. the
values of the corresponding functions of P(X) and z;(X) at x; however, a
local exception will be made in the proofs of propositions 2.2 to 2.4, where it
will denote the value of the corresponding function of P(X) at z;.

The main theorem that we need in our proofs is Bézout’s theorem (we do
not give the proof of this theorem which can be found in any Algebra book):

Theorem A.1 (Bézout’s theorem) Let P and @ be two non-zero poly-
nomials. Let G = gcd(P,Q). There exist two polynomials A and B, s.t.
AP + BQ = G.

Proposition 2.1 (Common roots) Let P, and P, be two non-zero polyno-
mials. Let G = gcd(Py, Py). We have: 3x.Py = 0A P, =0 iff 32.G = 0.

15

DELAHAYE & MAYERO

Proof. If P, or P, is a constant polynomial then G = 1 and the theorem
trivially holds; otherwise, we have:

e =: Let x¢ be a root of P, and P,. We have:
P1 = (X —_ .’l?o)Ql
P2 = (X — .I())QQ
Using Bézout’s theorem (theorem A.1), there exist A and B s.t.:
G = AP1 —+ BPQ = A(X — l'())Ql —+ B(X — LE())QQ = (X — SL'())(AQl —+ BQQ)
i.e. x¢ is also a root of G.
» «<: Let 24 be a root of G. We have G = (z — z)G; and
P =GQ: = (X - $0)G1Q1
P,=GQ, = (X - $0)G1Q2
i.e. g is also a root of P; and P.
|

Proposition 2.2 (Existence of a non-root value) Let) be a non-zero
polynomial. We have: 3x.QQ # 0.

Proof.

» deg(Q®) =0: @ = a # 0, where a is a constant, and any z fits.
* deg(Q) > 0: we know that 3z.1 +) = 0 (by definition of ACF since
deg(®) = deg(1+ @) > 0). Let x4 be a value verifying this proposition, i.e.
s.t. 14+ Q(zo) = 0. Then zq is s.t. Q(zo) = —1# 0.
O

Proposition 2.3 (Roots of relatively prime polynomials) Let P and Q
be two relatively prime non-zero polynomials (i.e. gcd(P,Q) = 1). We have:
. P=0AQ#0 iff 32.P = 0.

Proof.

* =: Let 2y be s.t. P(zp) =0 and Q(zo) # 0. Trivially, we have P(zy) = 0.

o <: We have that gcd(P,@) = 1. Using Bézout’s theorem (theorem A.1),
there exist A and B s.t. AP + BQ = 1. Let g be s.t. P(xo) = 0. We have
B(z9)Q(xzo) = 1 which implies that Q(xy) # 0.

O

Proposition 2.4 (Roots of quotient and gcd) Let P and Q be two non-
zero polynomials. Let G = gcd(P, Q) and Py be a polynomial s.t. P = GP;.
We have: 3z.P =0ANQ # 0 iff 3x.PL =0A G # 0.

Proof.

o =: Let 2o be s.t. P(xp) =0 and Q(z0) # 0. Let P; and Q1 be s.t.
P:GP1 andQ:GQl.
As Q(xo) # 0, we have G(zy) # 0 and then P;(zy) = 0.

o «<: Let zg be s.t. Pi(z9) =0 and G(z) # 0.
As Pi(z9) = 0, we have P(zo) = 0. Using Bézout’s theorem (theorem A.1),

16

DELAHAYE & MAYERO
we have B(zo)Q(zo) = G(xy) # 0 which implies Q(zq) # 0.
O

Proposition 2.5 (Degree decrease) Let P and @) be two non-zero polyno-
mials. Let G = ged(P, Q) and P; be a polynomial s.t. P=GP,. If P and Q
are not relatively prime then deg(P;) < deg(P).

Proof. If P and @ are not relatively prime then we have deg(G) > 0 and
trivially deg(P;) < deg(P) — 1. O

17

	Introduction
	Quantifier elimination over ACFs
	Preliminary lemmas
	Method

	Integration in a DS using a CAS
	Polynomials and characteristic
	A skeptical approach
	Using Coq and Maple

	Some examples
	Some simple cases
	Another example

	Related work
	Conclusion
	Summary
	Future work

	References
	Proofs

